

田口品质工程

前 言:

产品市场寿命渐短,新产品或式样不断更新,制程也不断跟随改变,在有限时间内设计出期望的新产品,决定原材料配方选用组合及制程参数或流程设计,成为重要决胜因素。

课程目标:

培训学员导入田口品质工程应用于产品研发及制程最佳化,以达到缩短设计与制程周期时间,并提升产品良率及其可靠度,经由国内、外电子及相关科技产业实际案例说明,使学员确实具备专案导入的能力。

课程特色:

本课程深入浅出,说明应用田口方法设计、规划、执行实验、数据资料分析、结论与建议,以决定最佳化之设计与制程参数。田口品质工程为系统化、科学的方法,运用在产品设计、制程开发、流程改进等实务方面均具备显著改善经验。

授课对象:

- ⇒ (过程) 工艺工程师
- ⇒ 产品/设计工程师
- ⇒ 各级项目经理
- ⇒ R&D 科学家
- ⇒ 质量改善工程师
- 制造经理与工程师
- ⇒ QA 经理与 QA 工程师
- ⇒ 工厂经理

授课

30 小时

时数

课程大纲					
単元	课程内容	时数 (hrs) 授课方式			
一 什么使田 口宏一成 名田口 质量哲学	 产品健壮性与过程(工艺)健壮性 参数:可控参数与噪音参数 质量的定义 "目标工程" 质量测量 	2 hrs			

A NOSNOON RE			
什么使田 口宏一成 名田口 质量哲学	▶ 离线质量与在线质量▶ 离线质量工程◆ 在线质量工程◆ 产品开发的并行工程原理◆ 实验设计、田口宏一与田口方法		
二 质量工程 之测度方 法概念	◆ 统计质量控制的基本方法和工具◆ 质量损失函数◆ 信嘲比◆ 静态信嘲比◆ 动态信嘲比	2 hrs	
三 参数设计 导论	 ▼实验设计的途径 ▼均值分析 自由度 正交的概念 正交实验设计 质量特性的选择 嘲声的确认与测量 控制参数选择 参数优化实验 	2 hrs	
四 容差设计 导论	 ◆ 三种容差的差别客户,设计和制造 ◆ 田口容差方程 ◆ 客户容差与工程容差的关系 ◆ 客户容差与系统容差和部件容差的关系 ◆ 容差设计的正交实验 ◆ 噪音与容差实验 ◆ 容差设计案例 	2 hrs	
五方差分析	▶ 方差分析过程▶ 方差分析自由度▶ F-检验▶ 案例	2 hrs	
六 田口方法 的应用导 论	軟件工具● 田口方法的步骤● 田口方法的使用注意事项	2 hrs	

七 质量损失 函数	 ◆ 望目特性的损失函数 ◆ 望小特性的损失函数 ◆ 望大特性的损失函数 ● 百分质量特性的质量损失函数 ◆ 动态特性的质量损失函数 ◆ 望大特性信嘲比——案例一 	2 hrs	
升 静态信嘲 比	◆ 望小特性信嘲比案例二◆ 窗口特性信嘲比案例三◆ 望目特性的信嘲比案例四◆ 两步优化法	2 hrs	
九 动态信嘲 比方法	▼ 零点正比情况◆ 参考点正比情况◆ 非线形动态问题◆ 双一动态问题信嘲比	2 hrs	
十三次设计	● 三次设计法则● 望目特性的三次设计● 望小特性的三次设计● 望大特性的三次设计● 动态特性的参数设计	2 hrs	
十一 参数设计 过程	 ◇ 设计的理想功能 ◇ 功能转换的有效性 ◇ 设计的理性功能 ◇ 质量特性选择指导 ◇ 嘲声参数的选择 ◇ 控制参数的选择 ◇ 参数优化实验 ◇ 参数优化实验分析与验证 	2 hrs	
十二 含相互作 用的情况	◆ 相互作用定义◆ 相互作用的测量◆ 相互作用的自由度◆ 包含作用的实验设计	2 hrs	
十三 田口方法研 讨与总结		6 hrs	